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Observing and modeling nonlinear dynamics in an internal combustion engine
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We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion
variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic,
small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine
cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion
efficiency in succeeding cycles. The model’s simplicity allows rapid simulation of thousands of engine cycles,
permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically
important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative
matches between our model and experimental time-series measurements.@S1063-651X~98!08903-X#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Under constant nominal operating conditions, spa
ignited internal combustion engines can exhibit substan
cycle-to-cycle variation in combustion energy release. T
phenomenon has been observed and studied since the
century~e.g., Clerk@1#!, and research has continued until t
present@2–10#. Extensive reviews of previous works a
given in @11,12#. Previous researchers have characterizedcy-
clic variability ~CV! in terms ranging from stochastic to lin
ear determinism to deterministic chaos. To date there
been no experimental confirmation of deterministic cha
underlying CV, but there has been experimental support
sented for both stochastic and linear deterministic featu
This ambiguity has created a continuing debate in the e
neering community about the true nature of CV@13#.

We propose a simple, discrete engine model that expl
how both stochastic and deterministic features can be
served. Our model is unique in that it combines stocha
and nonlinear deterministic elements to provide a glo
combustion description consistent with the underlying ph
ics. Our approach ignores complex spatial details and ins
focuses on the cylinder-average mass balance and en
release. The result is a simple nonlinear map that produ
cycle-resolved combustion time sequences statistically s
lar to a real engine. Because our model is physically realis
we expect that it can be used to predict CV trends with as
fuel-air ratio and to provide fundamental insight into t
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causes of combustion irregularities.
Economic and regulatory pressures are pushing en

manufacturers to operate with lean fueling and exhaust-
recirculation~EGR! to increase fuel economy and minimiz
NOx emissions. CV increases with lean fueling and EGR a
actually limits the potential benefits which can be deriv
from these operating modes. Thus understanding the ultim
causes of CV can have important economic and environm
tal consequences. Our goal is to provide engine desig
with insight that could lead to design improvements and
tive control methods for improving engine performance.

II. FOUR-STROKE ENGINE CYCLE

Most gasoline-fueled automobiles use engines opera
with the four-stroke, spark-ignition~Otto! cycle. Initially,
fuel and air are inducted through the intake valve into
cylinder, and the resulting mixture is compressed. At a po
typically just before maximal compression, the discharge
a high-voltage spark initiates combustion. Combustion a
expansion of the hot gases proceed following ignition, a
work is transferred through the piston, connecting rod a
crankshaft to the load. As the piston moves upward ag
following the power stroke, exhaust gases are vented thro
the exhaust valve. Following exhaust, a fresh fuel and
charge is inducted into the cylinder to begin the next cyc

In real engines, not all of the gases in the cylinder a
expelled during the exhaust process. Thisresidual fraction,
which includes combustion products and typically some
reacted fuel and air, is a function of engine design. Resid
fraction is affected by several design parameters, one of
most important beingvalve overlap, the brief period that the
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2812 57DAW, KENNEL, FINNEY, AND CONNOLLY
intake valve is open before the exhaust valve closes. Va
overlap is generally helpful at higher engine speeds in p
ducing power but at lower, near-idle speeds tends to deg
combustion ~i.e., increases CV!. The detailed physica
mechanisms governing residual fraction are quite com
cated, involving turbulent mixing in the cylinder and intak
and exhaust ports. For our model, it is the net effect of th
flows that is important, as discussed in Sec. III.

The crankshaft transfers power from the piston to
driveshaft, which transfers power to the load~e.g., wheels, in
automotive applications!. It is typical to describe piston lo
cation in terms ofcrank angle degrees~CAD!, the angle of
the crankshaft relative totop dead center, which is at ‘‘the
top’’ of its stroke and where the piston extension into t
cylinder is maximal.

The course of each combustion event can be followed
monitoring the internal cylinder pressure versus crank an
as depicted in Fig. 1. As energy is released during comb
tion, cylinder pressure exceeds that which occurs with
combustion, thereby producing useful work. CV causes n
repeating pressure traces during successive engine cy
The region in Fig. 1 in which the pressure traces diverge
the combustion region. In some cycles, combustion is inco
plete, leaving residual unburned fuel. In other cycles, exc
energy is produced from combustion of both residual a
fresh fuel. Both extremes of combustion are undesirable
cause they produce alternating pulses of fuel and nitro
oxides in the exhaust and a feeling of ‘‘roughness’’ to t
driver.

III. MODEL DEVELOPMENT

The primary deterministic element we focus on is t
presence of retained fuel and oxygen from one engine c
to the next. Retained fuel and oxygen influence succeed
cycles because of a strong nonlinear dependence of com
tion rate on the in-cylinder gas composition at the time
spark. We assume that other dynamical effects can be re
sented as stochastic fluctuations in one or more key par
eters, such as injected fuel-air ratio, residual-gas fract
and the lower ignition limit~the minimal fuel-air ratio to
achieve combustion!. By introducing these random parame
ric fluctuations, we intend to account for complex, hig
dimensional processes such as turbulent mixing, fuel-dro

FIG. 1. Variability in cylinder pressure from cycle to cycle
Pressure-trace segments from ten consecutive engine cycle
overlaid for visibility.
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vaporization, and fuel deposits on the cylinder wall. By t
central-limit theorem, we expect these noisy parametric
puts to be Gaussian distributed because they arise from
combined contribution of many processes. Although
fluctuations are input randomly, their ultimate effect is fi
tered through the global nonlinear determinism.

Our model is discrete in time, representing each full e
gine cycle~including intake and exhaust! as a single event
The dynamical variables which define the two-dimensio
state space are the masses of fuel and air present in the
inder at the time of spark,m@ i # anda@ i #, respectively.

A. Intake phase

The total mass of gas in the cylinder at the time of sp
is equal to the residual mass from the previous cycle p
new intake,

m@ i #5mres@ i #1mnew@ i #, ~1!

a@ i #5ares@ i #1anew@ i #, ~2!

where mres@ i # and ares@ i # are the masses of unreacted fu
and air remaining from the previous cycle, and whe
mnew@ i # andanew@ i # are the masses of fuel and air introduc
during the intake stroke.

The new fuel and air masses fed to the cylinder in ea
cycle are controlled by two constraints. First, the newly f
fuel and air are externally maintained in a fixed ratio~the
equivalence ratio! fo . The high-dimensional dynamics as
sociated with fuel vaporization, fuel-injector variations, a
air-fuel mixing are accounted for by stochastically perturbi
this ratio about its nominal~mean! value,

mnew@ i #

anew@ i #
5fo@11sfN~0,1!#, ~3!

wheresf is a scaling factor andN(0,1) is a random deviate
drawn each cycle from a zero-mean, unit-variance Gaus
distribution.

Second, we assume that immediately before combust
the total number of moles of fuel and air combined in t
cylinder is a constant. In nondimensional units,

m@ i #1WRa@ i #

11WR
51, ~4!

whereW5wf /wa is the ratio of the molecular weights of th
principal fuel and air fractions, andR is the air-fuel mass
ratio at stoichiometric burning, that is, the condition at whi
every fuel molecule is fully oxidized and no excess oxyg
remains.

This latter constraint@Eq. ~4!# can be reasonably justifie
assuming ideal-gas behavior and constant input press
throttling conditions, temperature, and cylinder volume.
our simulations, we usewf5114 g/mol andwa529 g/mol,
and R514.6, appropriate for common hydrocarbon fuels
air. Equations~3! and ~4! implicitly define the amount of
new fuel and air injected into the cylinder each cycle a
function of the amount of residual gas from the previo
cycle.

are
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57 2813OBSERVING AND MODELING NONLINEAR DYNAMICS . . .
B. Combustion efficiency

Combustion efficiency in any given cycle is defined as
fraction of the fuel present that burns. In the current vers
of our model, we assume net combustion efficiencyC is a
function only of the in-cylinder equivalence ratio,F@ i #
5m@ i #/a@ i #, at the time of spark:

C@ i #5C~F@ i # !5Cmax@111002~F@ i #2fm!/~fu2f l !#21.
~5!

As represented by Eq.~5!, the relationship between com
bustion efficiency and equivalence ratio has a sigmo
shape, converging toCmax ~near 1! asF approaches stoichi
ometry~i.e., F51! and converging to 0 asF becomes very
small. We parametrize the position of the knee byf l and
fu , the conditions where the efficiency is approximate
10% and 90% ofCmax, defining fm5(fu1f l)/2. In this
work, we only consider stoichiometric to lean combusti
(F<1).

The exact functional form of the combustion efficiency
somewhat arbitrary, but its general shape reflects the exp
mental observation and the physics of combustion. Spe
cally, it is known that asF drops below a critical value
called thelean limit, the burning rate and combustion effi
ciency decrease exponentially@14,15#. Also, Cmax cannot ex-
ceed 1 by definition. For hydrocarbon fuels, the critic
equivalence ratio is typically 0.5–0.6@14#. The steepness o
this curve is a consequence of the sensitivity of flame-fr
propagation speed to small changes in gas composition
the lean limit.

C. Combustion and exhaust phase

The heat released in each combustion event is pro
tional to Q@ i #5C@ i #m@ i #. The physical mechanism fo
cycle-to-cycle coupling is that a fractionF of the unreacted
fuel and air remains in the cylinder for the next cycle, th
affecting the next cycle’s combustion:

mres@ i 11#5Fm@ i #~12C@ i # !, ~6!

ares@ i 11#5F~a@ i #2RC@ i #m@ i # !. ~7!

We model fluctuations inFo by perturbing it each cycle with
a random number,

F5Fo@11sFN~0,1!#, ~8!

wheresF is a scaling factor andN(0,1) is a random deviate
drawn each cycle from a zero-mean, unit-variance Gaus
distribution. Experimental measurements suggest thatFo can
vary from 0 to 0.3 depending on engine design and opera
conditions@15#.

D. Summary of nondimensionalized model

We have nondimensionalized all air and fuel masses
units of what the fuel and air mass would each be at perfe
combusting stoichiometric conditions with no residuals~C
5Cmax'1, mres5ares50!.

The overall model is thus characterized as a tw
dimensional dynamic map, taking the state variablesm anda
one cycle forward in time:
e
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m@ i 11#5A~m@ i #,a@ i #,fo ,sf ,Fo ,sF ,...!, ~9!

a@ i 11#5B~m@ i #,a@ i #,fo ,sf ,Fo ,sF ,...! ~10!

for mapping functionsA and B. The key features are th
nonlinearity produced by the sharp change in combus
efficiency with F and the amplification of the random dy
namical perturbations info and Fo by the nonlinear map-
ping.

The constraint imposed by Eq.~4! reduces the effective
degrees of freedom to 1, so that the mapping can actuall
written in the form

Q@ i 11#5 f ~Q@ i #,m@ i #,a@ i #,fo ,sf ,Fo ,sF ,...!.
~11!

We keep the two-equation form@Eqs. ~9! and ~10!# to sim-
plify computation and to facilitate future improvements.

IV. MODEL PREDICTIONS

Bifurcation diagrams of combustion heat release based
changes info and the model parameters are shown in Fig
The parameter changes illustrated were selected to be w
the expected ranges described in Sec. III. Each plot is p
duced by iterating the mapping@Eqs.~9! and~10!# for a fixed
fo and the indicated parameter values beginning with a
trary initial values form anda and discarding start-up tran
sients.

Although the bifurcation details change with parame
values, certain general trends are apparent.

~i! Near stoichiometric conditions, the amount of fu
burned in each cycle stabilizes to a fixed point.

~ii ! For a decrease offo below a critical value, the
amount of fuel burned undergoes a period-2 bifurcation.

~iii ! For still lower fo , combustion oscillations becom
more complex, leading to multiperiodic or chaotic pattern

~iv! For very lowfo , combustion effectively ceases.
~v! When noise is added to eitherfo or Fo or both, the

detailed bifurcation structure becomes fuzzy but still refle
the underlying sequence of fixed point, period-2 bifurcatio
and/or chaos.

~vi! Noise also causes the initial bifurcation to occur a
higher fo ~i.e., higher than when no noise is added! and
maintains combustion in the extreme lean limit because
occasional spikes of additional fuel.

Briefly stated, our model predicts that combustion b
comes unstable near the lean limit due to the onset of per
doubling bifurcations. This instability is enhanced by ra
dom perturbations in parameters such as injected equival
ratio and residual fraction. The prediction of a perio
doubling instability is important because it provides a uniq
signature that can be experimentally verified, and becaus
demonstrates the relevance of nonlinear dynamics to r
world engine behavior.

V. EXPERIMENT

To provide a set of detailed observations which could
compared with our model, we made a series of CV meas
ments at fueling conditions ranging from near stoichiome
to very lean using a highly instrumented and we
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2814 57DAW, KENNEL, FINNEY, AND CONNOLLY
characterized engine. Although the engine was highly ins
mented, it was basically a production V8 engine with sta
dard port fuel injection connected to a dc motori
dynamometer. Thus we expect that our observations
likely to be relevant in a practical engineering context.

The nominal engine operating condition was 1200 RP
27.1-N m brake torque~engine load!, 20 CAD before top
center spark. The dynamometer was operated in sp
control mode to maintain a nearly constant engine speed
spite erratic combustion at very lean conditions. Without
dynamometer, the engine speed fluctuates significantly w
large numbers of misfires occur, making engine behav
nonstationary, and a comparison of the engine and mo

FIG. 2. Model equivalence-ratio (fo) bifurcation plots with
sf50 ~a!, sf50.001 ~b!, andsf50.01 ~c!. Fixed model param-
eters aref l50.59,fu50.60,Fo50.25, andsF50.
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problematic. Feedback engine controllers were engage
achieve an operating condition; once the condition w
achieved, the feedback controllers were shut off, and the
gine was run in open-loop mode, except for the dynamo
eter speed control. This strategy assured that combustion
minimally influenced by feedback controllers while the e
gine ran at a constant speed.

We recorded combustion pressure once per CAD from
single cylinder and nominal operating conditions at a 50-
rate for over 2800 contiguous cycles. Combustion press
measurements were made with a piezoelectric pressure t
ducer mounted in the cylinder head. To provide a dynam
measurement that could be compared with the model,
calculated the combustion heat release for each cycle by
tegrating the cylinder pressure data using a method equ
lent to the Rassweiler-Withrow method@15#. As a result, for
each engine experiment we produced time sequences of
2800 heat-release values.

Figure 3 shows short segments of heat-release time
quences from the engine at three equivalence ratios. At
nearly stoichiometric condition@Fig. 3~a!#, combustion is
variable, but the range of variations is small. For lean c
ditions @Figs. 3~b! and 3~c!#, the range of combustion hea
release increases. As seen in the figure, the mean value o
heat release for the three conditions shifts slightly, but
main difference is in the increase in variance.

Although many measurements of CV have been m
previously, we believe that the experimental protocol d
scribed above is unique. Specifically, we took great pains
eliminate noncombustion dynamic effects from the stand
engine controllers, and we collected much longer sequen
of combustion measurements than is usual. The additio
data provided us with much greater confidence in the e
tence of consistent dynamic patterns.

One complication in our experimental procedure whi
made comparisons with the model more difficult was that
controlled the injected fuel-air ratio by adjusting the thrott
Because the throttle changes intake pressure, factors su
in-cylinder mixing and residual gas fraction are al
changed. Thus it was not possible to make a series of r
changing only one parameter. Nevertheless, we were ab
vary the degree of CV enormously from very small amou
near stoichiometric fueling (fo51.0) to very high amounts
at very lean fueling (fo,0.55).

FIG. 3. Segments of measured engine heat-release time
quences at nominal operating conditions forfo50.91 ~i!, 0.59~ii !,
and 0.53~iii !.
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VI. APPLICATION OF SYMBOL STATISTICS

Contending with the effects of dynamical parameter no
is a key issue in characterizing the predicted model dynam
and comparing the model with experimental observatio
As seen in the model bifurcation diagrams, we expect s
noise to blur but not completely obscure the determinis
signature. To observe these noisy dynamical patterns,
employ the symbol-statistics approach suggested by T
et al. @16#; an alternate but analogous approach may
found in Ref. @17#. Although this method is motivated b
symbolic dynamics theory, it is not completely rigorou
mainly because generating partitions are undefined in
presence of noise. The reader is referred to Crutchfield
Packard@18# for a detailed discussion. Like Tanget al., we
use a practically motivated approach to depict the dyna
patterns in model-produced or observed measurements
to compare the goodness of fit between the model and
perimental data. In the latter case, we have been able i
tively to adjust the model parameters to obtain good ag
ment with the observations.

Our basic idea in using the symbol-statistics approac
to discretize the predicted or measured heat-release va
into a finite set of discrete values, as predicted in Fig.
Depending on the value of a given heat release, it is assig
one ofn symbolic values~e.g., 0 or 1 forn52; in the ter-
minology of symbol dynamics,n is thealphabet size!. Typi-
cally, we define discretization partitions such that the in
vidual occurrence of each symbol is equiprobable with
others. We do this to obtain ready discrimination betwe
random and nonrandom symbol sequences, recognizing
the resulting partition is not generating. Since a genera
partition is undefined in the presence of noise@18#, some
such practical approach is required in order to proceed.

Once a heat-release time series is symbolized, we ev
ate the relative frequency of all possible symbol sequence
the data defined by a symbol-sequence vector ofL cycles
length ~in the terminology of symbolic dynamics, this s
quence vector constitutes aword andL is theword size!. For
example, if we letL55, we determine the relative frequenc
of occurrence for each possible sequential combination
five symbols. A simple way to keep track of symbo
sequence frequencies is to assign a unique number to
possible sequence by evaluating the equivalent base-10 v
of each base-n sequence; we call this number thesequence
code. For example, a sequence of 010101 occurring wit
binary partition (n52) would have a sequence code of 2
This is very similar to the approach used by Rechester

FIG. 4. Procedure for conversion of a time series to a sym
series based on a defined partition.
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White @19#. Using this method of identifying each symbo
sequence also allows us to observe the relative-freque
histograms as two-dimensional plots~see Sec. VII!.

We refer to the tally of symbol-sequence frequencies v
sus sequence code as asymbol-sequence histogram. Because
of our partitioning rule, the relative frequency of each po
sible sequence for truly random data will be equal~subject to
the availability of sufficient data!. Thus any significant de-
viation from equiprobability is indicative of time correlatio
and deterministic structure. Similar to Tanget al., we define
a modified Shannon entropy as

HS~L !5
1

ln nseq (
i

pi ,L ln pi ,L ~12!

where nseq is the total number of sequences with nonze
frequency,i is a string-sequence index of sequence vec
lengthL, andpi ,L is the probability of string sequencei . The
only difference between Eq.~12! and the definition used by
Tanget al. is that we use the number of non-zero-frequen
sequences instead of the total number of possible seque
This choice ofnseq reflects the fact that many possible s
quences may not be realized because of finite data-set len
The result is to biasHS upward when the number of possib
sequences becomes large relative to the available data
random dataHS should equal 1, whereas for nonrandom da
it should be between 0 and 1.

One approach we found useful for selecting an appro
ate sequence vector length (L) involves using the modified
Shannon entropy. Specifically, we find thatHS typically
reaches a minimum value as vector length is increased f
1. This trend is illustrated in Fig. 5 using data generated w
the model at four operating conditions. As the bifurcati
progresses, the nonrandom part of the dynamics beco
more evident, even though significant parametric noise
present. We explain this minimum inHS as reflecting the
symbol-sequence transformation which best distinguishes
data from a random sequence. Sequence vectors that ar
short lose some of the important deterministic informatio
Sequence vectors that are too long reflect noise and
depletion~i.e., there are not enough data to obtain relia

l

FIG. 5. Determination of a suitable sequence vector lengthL by
a minimum in the modified Shannon entropy. Data are from
model at four equivalence ratios (fo): 0.91 ~i!, 0.67~ii !, 0.63~iii !,
and 0.59~iv!.
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2816 57DAW, KENNEL, FINNEY, AND CONNOLLY
statistics for such long sequences!. One can thus argue tha
the L value for which HS is minimum is an ‘‘optimal’’
choice for the given data.

VII. SYMBOL-SEQUENCE COMPARISONS

In comparing the experimental heat-release patterns
those predicted by the model, we begin by evaluating
general trends for the modified Shannon entropy. As ill
trated in Fig. 6, we find that the real engine exhibited sim
trends inHS with degree of leanness in fueling and symb
sequence length~compare with Fig. 5 for the model!. The
similarity in the figures suggests that the model and r
engine behave consistently in response to increasingly
fueling.

Figure 7 illustrates a more detailed comparison of
model and experiment through a sequence of sym
sequence histograms. The abscissa for all plots is the
quence code for the six-member binary sequence~i.e., n
52, L56!. Note that in both cases, peaks reflecting h
frequencies of 010101~21! and 101010~42! combinations
begin to emerge from a flat profile as the noisy period
bifurcation begins. The high visibility of these peaks, ev
when there is a high noise level, suggests that sym
sequence histograms may be generally useful for detec
the onset of noisy bifurcations.

VIII. FITTING THE MODEL

As mentioned previously, we were not able to control o
experimental engine such that all of the parameters rema
constant while the injected fuel-air ratio was reduced. W
also had no way of directly measuring the residual fract
Fo , or the noise amplitudes forFo and the injected fuel-air
ratio fo . Thus in making detailed comparisons between
model and experiment, we were limited to evaluating h
well the model could reproduce the observed behavior as
unknown parameters were adjusted over physically rea
able ranges.

To fit the model against observed data, we adjusted
model free parameters~f1 ,fu ,fo ,sf ,Fo ,sF , and a mul-
tiplicative scale factor relating nondimensional to expe
mental heat-release units!. We assumed the structure of th
parametric noise terms to be Gaussian. We optimized th
by iteratively adjusting the parameters to give the best ag

FIG. 6. Modified Shannon entropy as a function of seque
vector lengthL for experimental engine data at four equivalen
ratios (fo): 0.91 ~i!, 0.67 ~ii !, 0.63 ~iii !, and 0.59~iv!.
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ment between symbol statistics~as represented by th
symbol-sequence histogram! for iterations of the model and
experimental data.

In Ref. @16#, the Euclidean distance between vecto
whose elements are the occupations of all possible seque
served as the minimization target, but in this work, we us
two-samplex2 statistic as the criterion for minimization:

x25(
i

~Ni
obs2Ni

model!2

Ni
obs1Ni

model . ~13!

Using this method, we can also evaluate the statistical
nificance of a trial model fit, using the standardx2 probabil-
ity inference withnseq21 degrees of freedom, withnseq the
total number of sequences with non-zero frequency for eit
model or data.

With a good fit, the model converges to ax2 value which
will accept the null hypothesis that the same process ge
ated the histogram-bin occupations for model and exp
ment, thus providing some quantitative assurance that
model is a valid description of the experimental obser
tions. The minimization algorithm@20# was a hybrid of sim-
plex and genetic methods designed for continuous param
spaces without requiring derivatives.

Whereas a binary partition is sufficient for detecting t
onset of bifurcations, we find that higher-level partitions a
needed to obtain the best fit of our model to experimen
data. A vivid example of the insufficiency of a binary par
tion for fitting is illustrated in Figs. 8 and 9. Figure 8~a! is the
first return map for measured engine heat-release value

FIG. 7. Symbol-sequence histograms, with a binary partit
and sequence vector length of 6, for model~a! and engine~b! at
three equivalence ratios (fo): 0.91 ~i!, 0.59 ~ii !, and 0.53~iii !.

e
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fo50.63, whereas Fig. 8~b! is a first return map for the
logistic map with Gaussian noise added to the feedback
rameter. In the latter case, the mean value of the feedb
parameter has been adjusted to produce a period-2 os
tion. These return maps clearly reveal that the shapes o
underlying deterministic maps are different. Indeed, we
pect the logistic map to be less accurate than our en
model in matching our experimental data. Nevertheless
illustrated in Fig. 9~a!, the symbol-sequence histograms u
ing binary symbolization are nearly identical, making d
crimination of the two data sets on the basis of these hi
grams very difficult. Our point here is that a binary partitio
is clearly insufficient for distinguishing a more- from a les
appropriate model, given that the dynamics is dominated
a noisy period-2 oscillation. Even in the absence of noise
equiprobable binary partition cannot distinguish period
from period 4, period 8, etc.

Figure 9~b! illustrates how much easier it is to distinguis

FIG. 8. Lag-1 return maps for engine data atfo50.63~a! and a
noisy period-2 logistic map~b!. The noisy logistic map is intro-
duced to show that a simple binary partition using our equiproba
convention does not distinguish two very different models.
a-
ck
la-
he
-
e

as
-
-
o-

y
n

the engine data from a noisy logistic map by increasing
number of symbolsn from 2 to 4 @the sequence length wa
reduced from 6 to 3 to produce histograms with the sa
level of detail ~26543564 elements!#. Since a generating
partition is not available in cases such as ours, partit
choice must be based on a tradeoff between the numbe
symbols and the sequence vector length, both of which af
the size and statistical significance of the symbol-seque
histogram. In our case, the high noise level and rapid div
gence of nearby points reduces the information memory
the system to be a short time, making symbolizations long
time but coarse in partitioning less desirable, and emp
cally, less effective for best fitting.

In Fig. 10, we use return maps to illustrate how well o
fitted model matches the observed data for a moderately
fueling case. We used a variable partition of 9 and 8 in
two-cycle-long sequence to achieve this degree of fit, wh
9 is the number of partitions applied to the first member
the sequence and 8 is the number of partitions used for
second member. Variable partitioning schemes are by
means essential to the method but may be used with
harm. They sometimes provide better fits because the o
dimensional marginal distributions of trial simulations a
constrained to match the data more closely when the sym
partitions are not commensurate.

Note that in the first return map comparison@Fig. 10~a!#,
there is a downward bias in the upper-left portion of t
experimental map. This bias is a consistently occurring f
ture that we expect is due to a real difference between

le

FIG. 9. Symbol-sequence histograms for engine data atfo

50.63 and a noisy period-2 logistic map. A binary partition a
sequence vector length of 6, seen in~a!, does not provide the dis
criminatory power seen with a quaternary partition and seque
vector length of 3, seen in~b!.
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model and the experimental engine. We attribute this to
additional temperature effect that is currently unaccoun
for by the model. Specifically, we conjecture that lowe
than-expected heat release occurs following exception
poor combustion events because of reduced initial temp
ture at the time of spark. We plan to include this reduc
temperature effect in future model revisions.

Finally, in Fig. 11, we illustrate how well the gener
trends of the model and experimental data match. At eac
three fueling conditions corresponding to near stoich
metric, moderately lean, and very lean, we fitted the mode
the observed data. It is apparent that the same basic pat
are clearly occurring in both cases; namely a transition fr
~1! very-small-amplitude Gaussian combustion variat
near stoichiometric fueling to~2! a noisy period-2 combus
tion bifurcation at moderately lean fueling to~3! a noisy

FIG. 10. Return maps for engine data atfo50.59 ~light points!
and optimized-fit model data~dark points! for lag 1 ~a! and lag 2
~b!.
n
d

lly
a-
d

of
-
to
rns

multiperiod ~possibly chaotic! combustion condition at the
leanest condition. For all three fueling conditions the fitt
parameter values are well within the range of physical pl
sibility. The model is specific enough that there is litt
chance that such similar trends could be caused by ove
ting an overly general and unrealistic mathematical functi

IX. CONCLUSIONS

We believe our model provides a physically reasona
hypothesis that explains the observed time-resolved patt
in cyclic combustion variability. Depending on the injecte
fuel-air ratio, the behavior can appear to be purely stocha
or a mixture of stochastic and nonlinear dynamics. T
range of possible behavior may help explain apparently c
flicting observations from previous studies. The ability
describe engine fluctuations with such a simple yet phy
cally plausible model may also aid in the development
cycle-resolved control schemes to reduce or alter the pat
of cyclic fluctuations in order to improve engine perfo
mance.

Symbol-sequence statistics are useful for characteriz
engine behavior and quantitatively confirm the ability of
low-dimensional nonlinear map to explain the experimen
observations. We expect such statistics to be generally us

FIG. 11. Return maps for model~a! and engine~b! at three
equivalence ratios (fo): 0.91 ~i!, 0.59 ~ii !, and 0.53~iii !.
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for detecting noisy bifurcations and fitting models to noi
data.

We conjecture that the basic modeling approach we u
for engine combustion variations may have more general
plications. Specifically, we expect that there are many en
neering systems involving dominant deterministic nonl
earities and smaller-scale high-dimensional features. In s
systems it may often be possible to reproduce observed
,

er

E

pe

.

he

eu
7.
ed
p-
i-
-
ch
lo-

bal dynamics with simple deterministic models involvin
stochastic parametric noise.
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